Friday, November 7, 2008

Binding Energy

If the constituents of a hydrogen atom (a proton and an electron) are brought from infinity to form the atom, 13.6 3V of energy is released. Thus, the binding energy of a hydrogen atom in ground state is 13.6 eV. Also 13.6 eV energy must be supplied to the hydrogen atom in ground state to separate the constituents to large distances.

Similarly, the nucleons are bound together in a nucleus and energy must be supplied to the nucleus to separate the constituent nucleons to large distances. The amount of energy needed to do this is called the binding energy of the nucleus. If nucleons are brought together to form the nucleus from large separation this much energy is released.

It is evident from the above discussion that the rest mass energy of a nucleus is smaller than the rest mass energy of its constituents.

No comments: